login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342168
a(n) = U(n, (n+3)/2) where U(n, x) is a Chebyshev polynomial of the 2nd kind.
4
1, 4, 24, 204, 2255, 30744, 499121, 9409960, 202176360, 4878316860, 130651068911, 3846719565780, 123517560398401, 4296240885694576, 160935647131239840, 6460088606857290384, 276655979838719058119, 12591439417867717440180, 606947064800948702246681
OFFSET
0,2
LINKS
Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 11, 22.
FORMULA
a(n) = Sum_{k=0..n} (n+1)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (n+1)^k * binomial(n+1+k,2*k+1).
a(n) ~ exp(3) * n^n. - Vaclav Kotesovec, May 06 2021
MATHEMATICA
Table[ChebyshevU[n, (n + 3)/2], {n, 0, 18}] (* Amiram Eldar, Apr 27 2021 *)
PROG
(PARI) a(n) = polchebyshev(n, 2, (n+3)/2);
(PARI) a(n) = sum(k=0, n, (n+1)^(n-k)*binomial(2*n+1-k, k));
(PARI) a(n) = sum(k=0, n, (n+1)^k*binomial(n+1+k, 2*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 03 2021
STATUS
approved