login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A342171 Nonnegative integers k such that k < sec(k)*csc(k). 1
1, 22, 44, 355, 710, 1065, 1420, 1775, 2130, 2485, 2840, 3195, 260515, 312689, 1146408, 5419351, 10838702, 37362253, 122925461, 534483448, 3083975227, 902209779836, 74357078147863, 214112296674652, 642336890023956, 18190586279576483, 248319196091979065 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Conjecture: 2*k/Pi is either a little more than an even integer or a little less than an odd integer.

The conjecture is true. As k > 0 increases, satisfaction of the inequality k < sec(k)*csc(k) requires that sec(k)*csc(k) be a large positive number. Since sec(k)*csc(k) = 1/(sin(k)*cos(k)) = 2/sin(2*k), this requires that sin(2*k) be a small positive number, which occurs only when 2*k/Pi is a little more than an even integer or a little less than an odd integer. - Jon E. Schoenfield, Mar 06 2021

LINKS

Table of n, a(n) for n=1..27.

Jon E. Schoenfield, Magma program

MATHEMATICA

Select[Range[10^6], # < Sec[#] Csc[#] &] (* Michael De Vlieger, Mar 14 2021 *)

PROG

(Python)

import math

i = 1;

while True:

  if(i < 1/(math.cos(i)*math.sin(i))):

    print(str(i) + ", ")

  i += 1

(PARI) isok(k) = k < 1/(sin(k)*cos(k)); \\ Michel Marcus, Mar 05 2021

CROSSREFS

Cf. A249836, A332095, A337371.

Sequence in context: A038153 A033848 A084024 * A092328 A138869 A138872

Adjacent sequences:  A342168 A342169 A342170 * A342172 A342173 A342174

KEYWORD

nonn

AUTHOR

José Mauricio de Oliveira Neto, Mar 04 2021

EXTENSIONS

a(22)-a(27) from Jon E. Schoenfield, Mar 06 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 18:07 EDT 2022. Contains 353823 sequences. (Running on oeis4.)