login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342173
a(n) = Sum_{j=1..n-1} floor(prime(n)/prime(j)).
3
0, 1, 3, 6, 11, 14, 20, 23, 30, 39, 43, 53, 60, 64, 71, 81, 92, 96, 107, 115, 118, 130, 136, 148, 164, 171, 175, 183, 186, 194, 222, 229, 241, 245, 265, 269, 282, 293, 301, 313, 325, 329, 351, 354, 362, 366, 392, 417, 424, 428, 437, 450, 454, 473, 485, 498, 511
OFFSET
1,3
COMMENTS
a(n) is the sum of the quotients in integer division of prime(n) by all smaller primes.
LINKS
Lorenzo Sauras-Altuzarra, Some properties of the factors of Fermat numbers, Art Discrete Appl. Math. (2022).
FORMULA
a(n) = A308495(n) - 2. - Hugo Pfoertner, Mar 04 2021
a(n) = A013939(A006093(n)). - Flávio V. Fernandes, Jan 03 2025
EXAMPLE
a(4) = floor(7/2) + floor(7/3) + floor(7/5) = 6.
MAPLE
f:= proc(n) local t, i, s;
t:= ithprime(n);
add(floor(t/ ithprime(i)), i=1..n-1)
end proc:
map(f, [$1..100]);
MATHEMATICA
Table[Sum[Floor[Prime[n]/Prime[j]], {j, n-1}], {n, 64}] (* Stefano Spezia, Mar 04 2021 *)
PROG
(PARI) a(n) = sum(j=1, n-1, prime(n)\prime(j)); \\ Michel Marcus, Mar 04 2021
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
J. M. Bergot and Robert Israel, Mar 03 2021
STATUS
approved