login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342954
Number of interior regions formed by drawing n unit circles whose centers (s,t) are the partitions of k into 2 parts, where 0 < s <= t and s + t = k, ordered by increasing values of s and where k = 2,3,... .
0
1, 3, 6, 11, 14, 21, 24, 31, 36, 39, 46, 53, 56, 63, 70, 75, 78, 85, 92, 99, 102, 109, 116, 123, 128, 131, 138, 145, 152, 159, 162, 169, 176, 183, 190, 195, 198, 205, 212, 219, 226, 233, 236, 243, 250, 257, 264, 271, 276, 279, 286, 293, 300, 307, 314, 321, 324, 331, 338
OFFSET
1,2
FORMULA
a(1) = 1; a(n) = Sum_{i=1..n-1} (7 - 4*(floor(sqrt(i)) - floor(sqrt(i - 1)) + floor(sqrt(i + 1) + 1/2) - floor(sqrt(i) + 1/2)) - 2*(floor(sqrt(i + 1)) - floor(sqrt(i)))) for n > 1.
EXAMPLE
---------------------------------------------------------------------------
partitions of k into two parts
---------------------------------------------------------------------------
k 2 3 4 5 6 7 8 9
[1,7] [1,8]
[1,5] [1,6] [2,6] [2,7]
[1,3] [1,4] [2,4] [2,5] [3,5] [3,6]
[1,1] [1,2] [2,2] [2,3] [3,3] [3,4] [4,4] [4,5]
----------------------------------------------------------------------------
n circle centers number of regions formed
----------------------------------------------------------------------------
1 (1,1) 1
2 (1,1), (1,2) 3
3 (1,1), (1,2), (1,3) 6
4 (1,1), (1,2), (1,3), (2,2) 11
5 (1,1), (1,2), (1,3), (2,2), (1,4) 14
6 (1,1), (1,2), (1,3), (2,2), (1,4), (2,3) 21
...
MATHEMATICA
Join[{1}, Table[Sum[7 - 4 (Floor[Sqrt[i]] - Floor[Sqrt[i - 1]] + Floor[Sqrt[i + 1] + 1/2] - Floor[Sqrt[i] + 1/2]) - 2 (Floor[Sqrt[i + 1]] - Floor[Sqrt[i]]), {i, n - 1}], {n, 2, 80}]]
CROSSREFS
Cf. A339399.
Sequence in context: A342173 A282277 A122599 * A015823 A049620 A350438
KEYWORD
nonn,changed
AUTHOR
Wesley Ivan Hurt, Mar 30 2021
STATUS
approved