login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342956
a(n) = A001222(A001414(n)).
3
0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 3, 3, 1, 3, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 2, 4, 1, 1, 3, 1, 2, 1, 2, 1, 1, 2, 3, 3, 1, 1, 1, 4, 1, 2, 1, 1, 3, 1, 2, 1, 3, 3, 4, 1, 2, 2, 2, 1, 3, 1, 2, 1, 1, 3, 3, 1, 1, 3, 1, 1, 2, 2, 3, 5, 1, 1, 1, 3, 3, 2, 2, 4, 1, 1, 4, 1
OFFSET
1,4
COMMENTS
a(n) is the number of prime divisors of the sum of prime divisors of n, counting multiplicity in both cases.
LINKS
EXAMPLE
a(16) = 3 because A001414(16) = 2+2+2+2 = 8 and A001222(8) = A001222(2^3) = 3.
MAPLE
f:= proc(n) local t; numtheory:-bigomega(add(t[1]*t[2], t=ifactors(n)[2])) end proc:
map(f, [$1..100]);
MATHEMATICA
Array[PrimeOmega[Plus@@Times@@@FactorInteger@#]&, 100] (* Giorgos Kalogeropoulos, Mar 31 2021 *)
PROG
(Python)
from sympy import factorint
def A342956(n): return sum(factorint(sum(p*e for p, e in factorint(n).items())).values()) if n > 1 else 0 # Chai Wah Wu, Mar 31 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Mar 30 2021
STATUS
approved