|
|
A319661
|
|
2-rank of the class group of imaginary quadratic field with discriminant -k, k = A191483(n).
|
|
2
|
|
|
0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,9
|
|
COMMENTS
|
The p-rank of a finite abelian group G is equal to log_p(#{x belongs to G : x^p = 1}) where p is a prime number. In this case, G is the class group of Q(sqrt(-k)), and #{x belongs to G : x^p = 1} is the number of genera of Q(sqrt(-k)) (cf. A003642).
|
|
LINKS
|
Table of n, a(n) for n=1..87.
Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
|
|
FORMULA
|
a(n) = log_2(A003642(n)) = omega(A191483(n)) - 1, where omega(k) is the number of distinct prime divisors of k.
|
|
MATHEMATICA
|
PrimeNu[Select[Range[1000], Mod[#, 4] == 0 && SquareFreeQ[#/4] && Mod[#, 16] != 12&]] - 1 (* Jean-François Alcover, Aug 02 2019, after Andrew Howroyd in A191483 *)
|
|
PROG
|
(PARI) for(n=1, 1000, if(isfundamental(-n) && n%2==0, print1(omega(n) - 1, ", ")))
(Sage)
def A319661_list(len):
L = []
for n in range(2, len+1, 2):
if is_fundamental_discriminant(-n):
L.append(sloane.A001221(n) - 1)
return L
print(A319661_list(854)) # Peter Luschny, Oct 15 2018
|
|
CROSSREFS
|
Cf. A003642, A191483, A319659, A319660.
Sequence in context: A294338 A316790 A316789 * A320015 A342956 A241918
Adjacent sequences: A319658 A319659 A319660 * A319662 A319663 A319664
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jianing Song, Sep 25 2018
|
|
STATUS
|
approved
|
|
|
|