login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316790
Number of orderless same-tree-factorizations of n.
2
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
A constant factorization of n is a finite nonempty constant multiset of positive integers greater than 1 with product n. Constant factorizations correspond to perfect divisors (A089723). An orderless same-tree-factorization of n is either (case 1) the number n itself or (case 2) a finite multiset of two or more orderless same-tree-factorizations, one of each factor in a constant factorization of n.
a(n) depends only on the prime signature of n. - Andrew Howroyd, Nov 18 2018
LINKS
FORMULA
a(n) = 1 + Sum_{n = x^y, y > 1} binomial(a(x) + y - 1, y).
a(2^n) = A289078(n).
EXAMPLE
The a(64) = 9 orderless same-tree-factorizations:
64
(8*8)
(4*4*4)
(4*4*(2*2))
(8*(2*2*2))
(2*2*2*2*2*2)
(4*(2*2)*(2*2))
((2*2*2)*(2*2*2))
((2*2)*(2*2)*(2*2))
MATHEMATICA
a[n_]:=1+Sum[Binomial[a[n^(1/d)]+d-1, d], {d, Rest[Divisors[GCD@@FactorInteger[n][[All, 2]]]]}]
Array[a, 100]
PROG
(PARI) a(n)={my(z, e=ispower(n, , &z)); 1 + if(e, sumdiv(e, d, if(d>1, binomial(a(z^(e/d)) + d - 1, d))))} \\ Andrew Howroyd, Nov 18 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 14 2018
STATUS
approved