The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A319660 2-rank of the class group of imaginary quadratic field with discriminant -k, k = A039957(n). 2
 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,41 COMMENTS The p-rank of a finite abelian group G is equal to log_p(#{x belongs to G : x^p = 1}) where p is a prime number. In this case, G is the class group of Q(sqrt(-k)), and #{x belongs to G : x^p = 1} is the number of genera of Q(sqrt(-k)) (cf. A003641). LINKS Table of n, a(n) for n=1..87. Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013. FORMULA a(n) = log_2(A003641(n)) = omega(A039957(n)) - 1, where omega(k) is the number of distinct prime divisors of k. PROG (PARI) for(n=1, 1000, if(n%4==3 && issquarefree(n), print1(omega(n) - 1, ", "))) CROSSREFS Cf. A003641, A039957, A319659, A319661. Sequence in context: A033784 A226206 A350682 * A285726 A285005 A263074 Adjacent sequences: A319657 A319658 A319659 * A319661 A319662 A319663 KEYWORD nonn AUTHOR Jianing Song, Sep 25 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 05:52 EDT 2023. Contains 363044 sequences. (Running on oeis4.)