|
|
A319660
|
|
2-rank of the class group of imaginary quadratic field with discriminant -k, k = A039957(n).
|
|
2
|
|
|
0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 1, 1, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,41
|
|
COMMENTS
|
The p-rank of a finite abelian group G is equal to log_p(#{x belongs to G : x^p = 1}) where p is a prime number. In this case, G is the class group of Q(sqrt(-k)), and #{x belongs to G : x^p = 1} is the number of genera of Q(sqrt(-k)) (cf. A003641).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = log_2(A003641(n)) = omega(A039957(n)) - 1, where omega(k) is the number of distinct prime divisors of k.
|
|
PROG
|
(PARI) for(n=1, 1000, if(n%4==3 && issquarefree(n), print1(omega(n) - 1, ", ")))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|