OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * eta(q)^2 * eta(q^6) * eta(q^10) / (eta(q^2) * eta(q^3) * eta(q^5)) in powers of q.
Euler transform of period 30 sequence [ -2, -1, -1, -1, -1, -1, -2, -1, -1, -1, -2, -1, -2, -1, 0, -1, -2, -1, -2, -1, -1, -1, -2, -1, -1, -1, -1, -1, -2, -1, ...].
G.f.: Product_{k>0} (1 + x^(3*k)) * (1 + x^(5*k)) * (1 - x^k) / (1 + x^k).
Convolution inverse is A100823.
a(5*n + 2) = a(5*n + 4) = 0. a(5*n + 3) = A263073(n).
EXAMPLE
G.f. = 1 - 2*x + x^3 + x^5 - x^6 + x^8 - x^10 - x^11 + x^13 + x^15 + ...
G.f. = q - 2*q^4 + q^10 + q^16 - q^19 + q^25 - q^31 - q^34 + q^40 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] / (QPochhammer[ x^3, x^6] QPochhammer[ x^5, x^10]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A) * eta(x^10 + A) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^5 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 08 2015
STATUS
approved