login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263074
Expansion of phi(-x) / (chi(-x^3) * chi(-x^5)) in powers of x where phi(), chi() are Ramanujan theta functions.
1
1, -2, 0, 1, 0, 1, -1, 0, 1, 0, -1, -1, 0, 1, 0, 1, -3, 0, 2, 0, 1, -1, 0, 2, 0, 0, -3, 0, 1, 0, 2, -4, 0, 2, 0, 1, -3, 0, 3, 0, 1, -4, 0, 2, 0, 3, -6, 0, 4, 0, 4, -6, 0, 4, 0, 1, -7, 0, 4, 0, 3, -9, 0, 5, 0, 4, -8, 0, 6, 0, 3, -10, 0, 6, 0, 6, -13, 0, 8, 0, 5
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * eta(q)^2 * eta(q^6) * eta(q^10) / (eta(q^2) * eta(q^3) * eta(q^5)) in powers of q.
Euler transform of period 30 sequence [ -2, -1, -1, -1, -1, -1, -2, -1, -1, -1, -2, -1, -2, -1, 0, -1, -2, -1, -2, -1, -1, -1, -2, -1, -1, -1, -1, -1, -2, -1, ...].
G.f.: Product_{k>0} (1 + x^(3*k)) * (1 + x^(5*k)) * (1 - x^k) / (1 + x^k).
Convolution inverse is A100823.
a(5*n + 2) = a(5*n + 4) = 0. a(5*n + 3) = A263073(n).
EXAMPLE
G.f. = 1 - 2*x + x^3 + x^5 - x^6 + x^8 - x^10 - x^11 + x^13 + x^15 + ...
G.f. = q - 2*q^4 + q^10 + q^16 - q^19 + q^25 - q^31 - q^34 + q^40 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] / (QPochhammer[ x^3, x^6] QPochhammer[ x^5, x^10]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A) * eta(x^10 + A) / (eta(x^2 + A) * eta(x^3 + A) * eta(x^5 + A)), n))};
CROSSREFS
Sequence in context: A319660 A285726 A285005 * A281772 A082886 A287179
KEYWORD
sign
AUTHOR
Michael Somos, Oct 08 2015
STATUS
approved