login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263075
G.f. satisfies: [x^(n-1)] A(x)^(n^2) = n^n * (n-1)! for n>=1.
7
1, 1, 2, 31, 1150, 68713, 5914776, 692005074, 105932315154, 20617891510063, 4984425649932314, 1467604324373250545, 517561005098562714944, 215501019188749426210440, 104642607303457024105207408, 58625315029802441203026824094, 37541542090285460025870424920666
OFFSET
0,3
COMMENTS
It appears that for k>0, a(k) is odd iff k = 2*A003714(n)+1 for n>=0, where A003714 is the fibbinary numbers (integers whose binary representation contains no consecutive ones); this is true for at least the first 531 terms. [See also A263190 and A171791.]
LINKS
FORMULA
a(n) ~ exp(1-exp(-1)) * n! * n^(n-1). - Vaclav Kotesovec, Oct 20 2020
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 31*x^3 + 1150*x^4 + 68713*x^5 + 5914776*x^6 + 692005074*x^7 + 105932315154*x^8 +...
The coefficients in A(x)^(n^2) begin:
n=1: [1, 1, 2, 31, 1150, 68713, 5914776, 692005074, 105932315154, ...];
n=2: [1, 4, 14, 152, 5021, 289824, 24532494, 2841972672, 432284291486, ...];
n=3: [1, 9, 54, 507, 13356, 715635, 58722228, 6685822296, 1005887241243, ...];
n=4: [1, 16, 152, 1536, 31500, 1468016, 114260704, 12668897920, ...];
n=5: [1, 25, 350, 4275, 75000, 2840855, 202155100, 21547156900, ...];
n=6: [1, 36, 702, 10776, 184725, 5598720, 344795598, 34598389248, ...];
n=7: [1, 49, 1274, 24647, 456386, 11753973, 592950960, 54103596918, ...];
n=8: [1, 64, 2144, 51712, 1092016, 26366656, 1071635712, 84557168640, ...];
n=9: [1, 81, 3402, 100791, 2482650, 61309629, 2096140032, 135856780686, ...]; ...
where the terms along the main diagonal begin:
[1, 4, 54, 1536, 75000, 5598720, 592950960, 84557168640, ..., n^n*(n-1)!, ...].
Note that odd terms a(n) occur at positions n starting with:
[0, 1, 3, 5, 9, 11, 17, 19, 21, 33, 35, 37, 41, 43, 65, 67, 69, 73, 75, 81, 83, 85, 129, 131, 133, 137, 139, 145, 147, 149, 161, 163, 165, 169, 171, 257, ...],
which seems to equal A118113, the even Fibbinary numbers + 1, with an initial zero included.
PROG
(PARI) {a(n) = local(A=[1, 1]); for(i=1, n+1, A=concat(A, 0); m=#A; A[m] = ( m^m*(m-1)! - Vec(Ser(A)^(m^2))[m] )/m^2 ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 08 2015
STATUS
approved