login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171791
G.f. A(x) satisfies: [x^n] A(x)^((n+1)^2) = 0 for n>1 with a(0)=a(1)=1.
16
1, 1, -4, 25, -194, 1603, -15264, 122316, -1897710, -8845133, -1169435932, -52853978047, -3193246498792, -205347570309000, -14534295599537024, -1115833257773950536, -92445637289048967654, -8219735646409095418617
OFFSET
0,3
COMMENTS
It appears that for k>0, a(k) is odd iff k = 2*A003714(n)+1 for n>=0, where A003714 is the fibbinary numbers (integers whose binary representation contains no consecutive ones); this is true for at least the first 520 terms. [See also A263190 and A263075.] - Paul D. Hanna, Oct 09 2013
Observation of Paul D. Hanna is true for at least the first 1028 terms. - Sean A. Irvine, Apr 25 2014
LINKS
FORMULA
The g.f. A(x) satisfies the following relations.
(1) 0 = [x^(n-1)] A(x)^(n^2), for n > 1.
(2) 0 = [x^(n-1)] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), for n > 1. - Paul D. Hanna, Oct 22 2020
(3) 0 = [x^n] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), for n > 0. - Paul D. Hanna, Oct 22 2020
EXAMPLE
G.f.: A(x) = 1 + x - 4*x^2 + 25*x^3 - 194*x^4 + 1603*x^5 +...
The coefficients in the square powers of g.f. A(x) begin:
A^1: [1, 1, -4, 25, -194, 1603, -15264, 122316, ...];
A^4: [1, 4, -10, 56, -427, 3360, -33546, 218880, ...];
A^9: [1, 9, 0, 21, -252, 1701, -25992, -2970, ...];
A^16: [1, 16, 56, 0, -84, -784, -18656, -384896, ...];
A^25: [1, 25, 200, 525, 0, -2695, -38600, -878150, ...];
A^36: [1, 36, 486, 3000, 7821, 0, -101322, -1916352, ...];
A^49: [1, 49, 980, 10241, 58898, 170079, 0, -4515000, ...];
A^64: [1, 64, 1760, 27136, 256048, 1500352, 4979712, 0, ...];
A^81: [1, 81, 2916, 61425, 838026, 7720839, 48097152, 184870512, 0,...]; ...
Note how the coefficient of x^n in A(x)^((n+1)^2) = 0 for n>1.
ALTERNATE RELATION.
The coefficients in A(x)^(n^2) * (1 - n*x*A(x)'/A(x)) begin:
n=1: [1, 0, 4, -50, 582, -6412, 76320, -733896, 13283970, ...];
n=2: [1, 2, 0, -28, 427, -5040, 67092, -547200, 15539502, ...];
n=3: [1, 6, 0, 0, 84, -1134, 25992, 3960, 13172355, ...];
n=4: [1, 12, 28, 0, 0, 196, 9328, 288672, 13426530, ...];
n=5: [1, 20, 120, 210, 0, 0, 7720, 351260, 15775425, ...];
n=6: [1, 30, 324, 1500, 2607, 0, 0, 319392, 17452530, ...];
n=7: [1, 42, 700, 5852, 25242, 48594, 0, 0, 15518020, ...];
n=8: [1, 56, 1320, 16960, 128024, 562632, 1244928, 0, 0, ...];
n=9: [1, 72, 2268, 40950, 465570, 3431484, 16032384, 41082336, 0, 0, ...]; ...
in which the two adjacent diagonals above the main diagonal are all zeros after initial terms, illustrating that
(1) 0 = [x^(n-1)] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), and
(2) 0 = [x^n] A(x)^(n^2) * (1 - n*x*A(x)'/A(x)), for n > 0.
PROG
(PARI) {a(n) = local(A=[1, 1]); for(m=3, n+1, A=concat(A, 0); A[ #A]=-Vec(Ser(A)^(m^2))[m]/m^2); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jan 24 2010
STATUS
approved