login
A224079
E.g.f. is series reversion of log(1+x)/cosh(x).
0
1, 1, 4, 25, 191, 1981, 24515, 357393, 6014944, 114374701, 2429126965, 56973837097, 1462548099325, 40790689845725, 1228180553509096, 39706476998683809, 1371869867621426343, 50445615936195883981, 1967026296214873286071, 81070802180747506986681
OFFSET
1,3
FORMULA
E.g.f. satisfies: 1 + A(x) = exp(x*cosh(A(x))).
a(n) ~ n^(n-1) * ((1+s)*sinh(s))^n * sqrt((1+s)/(1+s+tanh(s))) / exp(n), where s = 0.96996536567590308324... is the root of the equation (1+s)*log(1+s)*tanh(s) = 1. - Vaclav Kotesovec, Jan 13 2014
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 25*x^4/4! + 191*x^5/5! + 1981*x^6/6! +...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[Log[1+x]/Cosh[x], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 13 2014 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); n!*polcoeff(serreverse(log(1+X)/cosh(X)), n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Cf. A052888.
Sequence in context: A064063 A171991 A141371 * A199494 A171791 A060908
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 20 2013
STATUS
approved