OFFSET
0,2
COMMENTS
REFERENCES
A. I. Aptekarev (Editor), Rational approximants for Euler's constant and recurrence relations, Collected papers, Sovrem. Probl. Mat. ("Current Problems in Mathematics") Vol. 9, MIAN (Steklov Institute), Moscow (2007), 84pp (Russian)
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..223
Kh. Hessami Pilehrood, T. Hessami Pilehrood, On a continued fraction expansion for Euler's constant, Journal of Number Theory, 133 (2013) 769--786.
D. N. Tulyakov, A system of recurrence relations for rational approximations of the Euler constant, (Russian) Mat. Zametki 85 (2009), No. 5 , 782-787. Translation: Mathematical Notes 85 (2009), No. 5, 746-750.
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k)^2 *(n+k)!*(H(n+k)+2*H(n-k)-2*H(k)) where H(n) is the n-th harmonic number. (Pilehrood)
(16*n - 15)*a(n+1) = (128*n^3 + 40*n^2 - 82*n - 45)*a(n) - n^2*(256*n^3 -240*n^2 +64*n-7)*a(n-1) +(16*n + 1)*n^2*(n - 1)^2*a(n-2), (the integrality has been proved by Tulyakov).
EXAMPLE
G.f. = 2*x + 31*x^2 + 1209*x^3 + 87510*x^4 + 10062642*x^5 + ...
MATHEMATICA
Table[ Sum[ Binomial[n, k]^2 (n + k)! (HarmonicNumber[n + k] + 2 HarmonicNumber[n - k] - 2 HarmonicNumber[k]), {k, 0, n}], {n, 0, 20}]
PROG
(PARI) {a(n) = my(H = k->sum(i=1, k, 1/i)); sum(k=0, n, binomial(n, k)^2 * (n+k)! * (H(n+k) + 2*H(n-k) - 2*H(k)))}; /* Michael Somos, Nov 25 2016 */
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Juan Arias-de-Reyna, Mar 24 2013
STATUS
approved