login
A217766
Numerators for a rational approximation to Euler constant.
2
0, 2, 31, 1209, 87510, 10062642, 1676297196, 380613039300, 112785012934704, 42220061283665808, 19466179705605460320, 10832183496342326864160, 7154687325911822697398400, 5531732531984974533825018240, 4947671342477051367102277159680, 5067624845854754327998998304876800
OFFSET
0,2
COMMENTS
a(n)/A217767(n) converges to Euler's constant.
0 < A217766(n)/A217767(n)-gamma < 2*Pi*exp(-2*sqrt(2n))(1+O(n^(-1/2))).
REFERENCES
A. I. Aptekarev (Editor), Rational approximants for Euler's constant and recurrence relations, Collected papers, Sovrem. Probl. Mat. ("Current Problems in Mathematics") Vol. 9, MIAN (Steklov Institute), Moscow (2007), 84pp (Russian)
LINKS
Kh. Hessami Pilehrood, T. Hessami Pilehrood, On a continued fraction expansion for Euler's constant, Journal of Number Theory, 133 (2013) 769--786.
D. N. Tulyakov, A system of recurrence relations for rational approximations of the Euler constant, (Russian) Mat. Zametki 85 (2009), No. 5 , 782-787. Translation: Mathematical Notes 85 (2009), No. 5, 746-750.
FORMULA
a(n) = Sum_{k=0..n} binomial(n,k)^2 *(n+k)!*(H(n+k)+2*H(n-k)-2*H(k)) where H(n) is the n-th harmonic number. (Pilehrood)
(16*n - 15)*a(n+1) = (128*n^3 + 40*n^2 - 82*n - 45)*a(n) - n^2*(256*n^3 -240*n^2 +64*n-7)*a(n-1) +(16*n + 1)*n^2*(n - 1)^2*a(n-2), (the integrality has been proved by Tulyakov).
EXAMPLE
G.f. = 2*x + 31*x^2 + 1209*x^3 + 87510*x^4 + 10062642*x^5 + ...
MATHEMATICA
Table[ Sum[ Binomial[n, k]^2 (n + k)! (HarmonicNumber[n + k] + 2 HarmonicNumber[n - k] - 2 HarmonicNumber[k]), {k, 0, n}], {n, 0, 20}]
PROG
(PARI) {a(n) = my(H = k->sum(i=1, k, 1/i)); sum(k=0, n, binomial(n, k)^2 * (n+k)! * (H(n+k) + 2*H(n-k) - 2*H(k)))}; /* Michael Somos, Nov 25 2016 */
CROSSREFS
Cf. A217767 (denominators).
Sequence in context: A349071 A224863 A263075 * A246970 A246969 A358567
KEYWORD
nonn,frac
AUTHOR
Juan Arias-de-Reyna, Mar 24 2013
STATUS
approved