The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263073 Expansion of phi(-x^5) / (chi(-x) * chi(-x^15)) in powers of x where phi(), chi() are Ramanujan theta functions. 2
 1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 4, 4, 5, 6, 6, 8, 9, 9, 12, 12, 13, 16, 18, 18, 22, 24, 25, 29, 32, 34, 40, 43, 45, 52, 56, 60, 68, 74, 78, 88, 95, 101, 113, 122, 130, 145, 156, 166, 184, 198, 209, 231, 249, 264, 290, 311, 331, 361, 388, 412, 448, 480, 510, 554 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 0..2500 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015. Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q^(-2/3) * eta(q^2) * eta(q^5)^2 * eta(q^30) / (eta(q) * eta(q^10) * eta(q^15)) in powers of q. Euler transform of period 30 sequence [1, 0, 1, 0, -1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 0, 0, 1, 0, 1, -1, 1, 0, 1, 0, -1, 0, 1, 0, 1, -1, ...]. a(n) ~ exp(sqrt(7*n/5)*Pi/3) / (2*sqrt(5*n)). - Vaclav Kotesovec, Jul 11 2016 EXAMPLE G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + x^5 + 2*x^6 + 3*x^7 + 2*x^8 + 4*x^9 + ... G.f. = q^2 + q^5 + q^8 + 2*q^11 + 2*q^14 + q^17 + 2*q^20 + 3*q^23 + 2*q^26 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^5] / (QPochhammer[ x, x^2] QPochhammer[ x^15, x^30]), {x, 0, n}]; nmax = 100; CoefficientList[Series[Product[(1+x^k) * (1-x^(5*k)) * (1+x^(15*k)) / (1+x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^5 + A)^2 * eta(x^30 + A) / (eta(x + A) * eta(x^10 + A) * eta(x^15 + A)), n))}; (PARI) q='q+O('q^99); Vec(eta(q^2)*eta(q^5)^2*eta(q^30)/(eta(q)*eta(q^10)*eta(q^15))) \\ Altug Alkan, Jul 31 2018 CROSSREFS Sequence in context: A264401 A173304 A029251 * A133091 A112204 A129710 Adjacent sequences: A263070 A263071 A263072 * A263074 A263075 A263076 KEYWORD nonn AUTHOR Michael Somos, Oct 08 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 04:48 EST 2023. Contains 367662 sequences. (Running on oeis4.)