login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263073
Expansion of phi(-x^5) / (chi(-x) * chi(-x^15)) in powers of x where phi(), chi() are Ramanujan theta functions.
2
1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 4, 4, 5, 6, 6, 8, 9, 9, 12, 12, 13, 16, 18, 18, 22, 24, 25, 29, 32, 34, 40, 43, 45, 52, 56, 60, 68, 74, 78, 88, 95, 101, 113, 122, 130, 145, 156, 166, 184, 198, 209, 231, 249, 264, 290, 311, 331, 361, 388, 412, 448, 480, 510, 554
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-2/3) * eta(q^2) * eta(q^5)^2 * eta(q^30) / (eta(q) * eta(q^10) * eta(q^15)) in powers of q.
Euler transform of period 30 sequence [1, 0, 1, 0, -1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 0, 0, 1, 0, 1, -1, 1, 0, 1, 0, -1, 0, 1, 0, 1, -1, ...].
a(n) ~ exp(sqrt(7*n/5)*Pi/3) / (2*sqrt(5*n)). - Vaclav Kotesovec, Jul 11 2016
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + x^5 + 2*x^6 + 3*x^7 + 2*x^8 + 4*x^9 + ...
G.f. = q^2 + q^5 + q^8 + 2*q^11 + 2*q^14 + q^17 + 2*q^20 + 3*q^23 + 2*q^26 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^5] / (QPochhammer[ x, x^2] QPochhammer[ x^15, x^30]), {x, 0, n}];
nmax = 100; CoefficientList[Series[Product[(1+x^k) * (1-x^(5*k)) * (1+x^(15*k)) / (1+x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^5 + A)^2 * eta(x^30 + A) / (eta(x + A) * eta(x^10 + A) * eta(x^15 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q^2)*eta(q^5)^2*eta(q^30)/(eta(q)*eta(q^10)*eta(q^15))) \\ Altug Alkan, Jul 31 2018
CROSSREFS
Sequence in context: A264401 A173304 A029251 * A133091 A112204 A129710
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 08 2015
STATUS
approved