login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263073 Expansion of phi(-x^5) / (chi(-x) * chi(-x^15)) in powers of x where phi(), chi() are Ramanujan theta functions. 2
1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 4, 4, 5, 6, 6, 8, 9, 9, 12, 12, 13, 16, 18, 18, 22, 24, 25, 29, 32, 34, 40, 43, 45, 52, 56, 60, 68, 74, 78, 88, 95, 101, 113, 122, 130, 145, 156, 166, 184, 198, 209, 231, 249, 264, 290, 311, 331, 361, 388, 412, 448, 480, 510, 554 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-2/3) * eta(q^2) * eta(q^5)^2 * eta(q^30) / (eta(q) * eta(q^10) * eta(q^15)) in powers of q.
Euler transform of period 30 sequence [1, 0, 1, 0, -1, 0, 1, 0, 1, -1, 1, 0, 1, 0, 0, 0, 1, 0, 1, -1, 1, 0, 1, 0, -1, 0, 1, 0, 1, -1, ...].
a(n) ~ exp(sqrt(7*n/5)*Pi/3) / (2*sqrt(5*n)). - Vaclav Kotesovec, Jul 11 2016
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 2*x^4 + x^5 + 2*x^6 + 3*x^7 + 2*x^8 + 4*x^9 + ...
G.f. = q^2 + q^5 + q^8 + 2*q^11 + 2*q^14 + q^17 + 2*q^20 + 3*q^23 + 2*q^26 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^5] / (QPochhammer[ x, x^2] QPochhammer[ x^15, x^30]), {x, 0, n}];
nmax = 100; CoefficientList[Series[Product[(1+x^k) * (1-x^(5*k)) * (1+x^(15*k)) / (1+x^(5*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^5 + A)^2 * eta(x^30 + A) / (eta(x + A) * eta(x^10 + A) * eta(x^15 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q^2)*eta(q^5)^2*eta(q^30)/(eta(q)*eta(q^10)*eta(q^15))) \\ Altug Alkan, Jul 31 2018
CROSSREFS
Sequence in context: A264401 A173304 A029251 * A133091 A112204 A129710
KEYWORD
nonn
AUTHOR
Michael Somos, Oct 08 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 04:48 EST 2023. Contains 367662 sequences. (Running on oeis4.)