|
|
A263070
|
|
Number of lattice paths from {n}^10 to {0}^10 using steps that decrement one or more components by one.
|
|
2
|
|
|
1, 102247563, 1843200116875263613, 93777824804632275267836362863, 7581761490297442738124283591348762605121, 797656368265147949572521540584234236944835806750363, 99479717242433942914309980793245660313479486272546475327799069
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) ~ sqrt(c) * d^n / (Pi*n)^(9/2), where d = 275651917450.670923828699577660562035773700532729... and c = 0.02031773288889520997973589484779079409621454... . - Vaclav Kotesovec, Mar 23 2016
|
|
MATHEMATICA
|
With[{k = 10}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 10}]] (* Vaclav Kotesovec, Mar 22 2016 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|