login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A263067 Number of lattice paths from {n}^7 to {0}^7 using steps that decrement one or more components by one. 2
1, 47293, 58514835289, 143743469278461361, 480086443888959812703121, 1909946024633189859690880523893, 8508048612432263410111274212273801489, 41020870889694863957061607086939138327565057, 209691630817770382144439647416526247292909726379393 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..100

Vaclav Kotesovec, Recurrence (of order 7)

FORMULA

a(n) ~ sqrt(c) * d^n / (Pi*n)^3, where d = 7553550.61983382187210690975164995019966376572879... is the root of the equation -1 + 7*d - 24031*d^2 - 374521*d^3 - 24850385*d^4 + 17978709*d^5 - 7553553*d^6 + d^7 = 0 and c = 0.1137319057755565367034882185733003109119819... is the root of the equation -1 - 12544*c - 61816832*c^2 - 151057858560*c^3 - 189486977777664*c^4 - 113186888059191296*c^5 - 25353862925258850304*c^6 + 231806746745223774208*c^7 = 0. - Vaclav Kotesovec, Mar 23 2016

MATHEMATICA

With[{k = 7}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 15}]] (* Vaclav Kotesovec, Mar 22 2016 *)

CROSSREFS

Column k=7 of A262809.

Sequence in context: A320621 A218097 A293584 * A234708 A069370 A241221

Adjacent sequences: A263064 A263065 A263066 * A263068 A263069 A263070

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Oct 08 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 27 05:12 EST 2022. Contains 358362 sequences. (Running on oeis4.)