

A241221


Primes obtained by merging 5 successive digits in the decimal expansion of sqrt(2) + sqrt(3) + sqrt(5).


1



47441, 87383, 66809, 80953, 87119, 19753, 48163, 81637, 35591, 52967, 96763, 30727, 77621, 80809, 16903, 35051, 14159, 24877, 56437, 24677, 67723, 32077, 29429, 76831, 11257, 57367, 36787, 80207, 61141, 68351, 35129, 47701, 77017, 64579, 24671, 37277, 27701, 56873
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All the terms in the sequence are 5digit primes because leading zeros are not permitted.


LINKS

K. D. Bajpai, Table of n, a(n) for n = 1..4248


EXAMPLE

a(1) = 47441, which is prime. It is the first occurrence of a 5digit prime in the decimal expansion of sqrt(2) + sqrt(3) + sqrt(5), i.e., 5.3823323(47441)76203873830873445 ...


MATHEMATICA

With[{len = 5}, Select[FromDigits /@Partition[RealDigits[Sqrt[2] + Sqrt[3] + Sqrt[5], 10, 1000][[1]], len, 1], IntegerLength[#] == len && PrimeQ[#] &]]


CROSSREFS

Cf. A198161, A198162, A198163, A198164, A198165, A198166, A198169, A241149.
Sequence in context: A263067 A234708 A069370 * A261339 A166003 A221017
Adjacent sequences: A241218 A241219 A241220 * A241222 A241223 A241224


KEYWORD

nonn,base


AUTHOR

K. D. Bajpai, Apr 18 2014


STATUS

approved



