login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A263066
Number of lattice paths from {n}^6 to {0}^6 using steps that decrement one or more components by one.
2
1, 4683, 308682013, 35941784497263, 5402040231378569121, 939073157252309315848923, 179349571255187154941191217629, 36585008462723983824862891403150079, 7835213566547395052871069325808866414849, 1742079663955078309800553960117733249663480043
OFFSET
0,2
LINKS
Vaclav Kotesovec, Recurrence (of order 6)
FORMULA
a(n) ~ sqrt(c) * d^n / (Pi*n)^(5/2), where d = 296476.91626442008149098622814984912648229139426918084511... is the root of the equation 1 - 18*d - 5397*d^2 - 123696*d^3 + 321303*d^4 - 296478*d^5 + d^6 = 0 and c = 0.19491147281619801027873171908746401584984116403035035539868... is the root of the equation -1 - 4608*c - 7962624*c^2 - 6341787648*c^3 - 2283043553280*c^4 - 300578991243264*c^5 + 1603087953297408*c^6 = 0. - Vaclav Kotesovec, Mar 23 2016
MATHEMATICA
With[{k = 6}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 15}]] (* Vaclav Kotesovec, Mar 22 2016 *)
CROSSREFS
Column k=6 of A262809.
Sequence in context: A320620 A218096 A293583 * A252773 A368192 A204073
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 08 2015
STATUS
approved