login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A293583
Number of compositions of n where each part i is marked with a word of length i over a senary alphabet whose letters appear in alphabetical order and all six letters occur at least once in the composition.
2
4683, 155928, 3116220, 48697048, 657516672, 8065687344, 92540869002, 1011476639976, 10662168594984, 109327852591208, 1097238662684028, 10827944900524680, 105430826499237004, 1015590292306277376, 9698300806656595584, 91961212434214073824, 866974686508851897168
OFFSET
6,1
LINKS
FORMULA
a(n) = 42*a(n-1) - 770*a(n-2) + 8190*a(n-3) - 56854*a(n-4) + 275758*a(n-5) - 980010*a(n-6) + 2645668*a(n-7) - 5576808*a(n-8) + 9366788*a(n-9) - 12715312*a(n - 10) + 14078260*a(n - 11) - 12772248*a(n - 12) + 9499064*a(n - 13) - 5769584*a(n - 14) + 2837496*a(n - 15) - 1113568*a(n - 16) + 340784*a(n - 17) - 78416*a(n - 18) + 12768*a(n - 19) - 1312*a(n - 20) + 64*a(n - 21). - Vaclav Kotesovec, Oct 14 2017
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n))
end:
a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(6):
seq(a(n), n=6..30);
CROSSREFS
Column k=6 of A261781.
Sequence in context: A226801 A320620 A218096 * A263066 A252773 A368192
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 12 2017
STATUS
approved