login
Number of lattice paths from {n}^10 to {0}^10 using steps that decrement one or more components by one.
2

%I #8 Mar 23 2016 12:50:03

%S 1,102247563,1843200116875263613,93777824804632275267836362863,

%T 7581761490297442738124283591348762605121,

%U 797656368265147949572521540584234236944835806750363,99479717242433942914309980793245660313479486272546475327799069

%N Number of lattice paths from {n}^10 to {0}^10 using steps that decrement one or more components by one.

%H Alois P. Heinz, <a href="/A263070/b263070.txt">Table of n, a(n) for n = 0..50</a>

%F a(n) ~ sqrt(c) * d^n / (Pi*n)^(9/2), where d = 275651917450.670923828699577660562035773700532729... and c = 0.02031773288889520997973589484779079409621454... . - _Vaclav Kotesovec_, Mar 23 2016

%t With[{k = 10}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 10}]] (* _Vaclav Kotesovec_, Mar 22 2016 *)

%Y Column k=10 of A262809.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Oct 08 2015