The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A287179 1-limiting word of the morphism 0->10, 1->20, 2->1. 5
 1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 COMMENTS Starting with 0, the first 5 iterations of the morphism yield words shown here: 1st:  10 2nd:  2010 3rd:  1102010 4th:  2020101102010 5th:  11011020102020101102010 The 1-limiting word is the limit of the words for which the number of iterations is odd. Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively.  Then 1/U + 1/V + 1/W = 1, where U = 2.246979603717467061050009768008..., V = 2.801937735804838252472204639014..., W = 5.048917339522305313522214407023... If n >=2, then u(n) - u(n-1) is in {2,3}, v(n) - v(n-1) is in {1,2,4,6}, and w(n) - w(n-1) is in {2,4,7,10}. LINKS Clark Kimberling, Table of n, a(n) for n = 1..10000 EXAMPLE 1st iterate: 10 3rd iterate: 1102010 5th iterate: 110110201020201011020100 MATHEMATICA s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {2, 0}, 2 -> 1}] &, {0}, 9] (* A287179 *) Flatten[Position[s, 0]] (* A287180 *) Flatten[Position[s, 1]] (* A287181 *) Flatten[Position[s, 2]] (* A287182 *) CROSSREFS Cf. A287121, A287180, A287181, A287182. Sequence in context: A263074 A281772 A082886 * A236511 A235924 A097304 Adjacent sequences:  A287176 A287177 A287178 * A287180 A287181 A287182 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 22 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 6 11:14 EDT 2020. Contains 336246 sequences. (Running on oeis4.)