login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A287121 0-limiting word of the morphism 0->10, 1->20, 2->1. 5
2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Starting with 0, the first 5 iterations of the morphism yield words shown here:

1st:  10

2nd:  2010

3rd:  1102010

4th:  2020101102010

5th:  11011020102020101102010

The 0-limiting word is the limit of the words for which the number of iterations is even.

Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively.  Then 1/U + 1/V + 1/W = 1, where

U = 2.246979603717467061050009768008...,

V = 2.801937735804838252472204639014...,

W = 5.048917339522305313522214407023...

If n >=2, then u(n) - u(n-1) is in {2,3}, v(n) - v(n-1) is in {1,2,4,6}, and w(n) - w(n-1) is in {2,4,7,10}.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..10000

EXAMPLE

2nd iterate: 2010

4th iterate: 2020101102010

6th iterate: 202010202010110201011011020102020101102010

MATHEMATICA

s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {2, 0}, 2 -> 1}] &, {0}, 10] (* A287121 *)

Flatten[Position[s, 0]] (* A287122 *)

Flatten[Position[s, 1]] (* A287123 *)

Flatten[Position[s, 2]] (* A287124 *)

CROSSREFS

Cf. A287122, A287123, A287124, A287129.

Sequence in context: A039973 A035171 A088700 * A035446 A126211 A095414

Adjacent sequences:  A287118 A287119 A287120 * A287122 A287123 A287124

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, May 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 05:00 EDT 2020. Contains 337346 sequences. (Running on oeis4.)