

A067932


Primes p such that p+3 == 0 (mod phi(p+3)).


1



3, 5, 13, 29, 61, 509, 1021, 4093, 16381, 1048573, 4194301, 16777213, 536870909, 19807040628566084398385987581, 83076749736557242056487941267521533, 5316911983139663491615228241121378301
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

phi(n) divides n iff n=1 or n=2^w*3^u for w>=1 and u>=0 (see A007694). Such an n can only have the form p+3 if n=6 or n is a power of 2. So the terms of the sequence are 3 and the primes of the form 2^n3, listed in A050415.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..30


MATHEMATICA

Prepend[Select[2^Range[2, 200]3, PrimeQ], 3]


CROSSREFS

Sequence in context: A295617 A290113 A238216 * A339155 A168314 A335562
Adjacent sequences: A067929 A067930 A067931 * A067933 A067934 A067935


KEYWORD

easy,nonn


AUTHOR

Benoit Cloitre, Feb 22 2002


EXTENSIONS

Edited and extended by Robert G. Wilson v, Feb 27 2002 and by Dean Hickerson, Mar 21 2002


STATUS

approved



