login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260705
Least integer k such that the set of the divisors of k contains exactly n pairs of numbers having the following property: for each pair of two distinct divisors, the reversal of one is equal to the other.
3
84, 168, 336, 1008, 3024, 5544, 11088, 16632, 33264, 49896, 99792, 182952, 365904, 249480, 498960, 1097712, 2162160, 3359664, 1846152, 3027024, 5538456, 6054048, 9081072, 9230760, 14270256, 19891872, 20307672, 25197480, 33297264, 45405360, 55135080, 71351280
OFFSET
1,1
COMMENTS
It seems that a(n)==0 (mod 84).
Additional terms with n > 75: a(77) = 15455984544, a(80) = 27719972280, a(83) = 22439977560, a(84) = 18479981520, a(86) = 28559971440. - Lars Blomberg, Jan 04 2016
LINKS
EXAMPLE
a(4)=1008 because the set of the divisors {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 36, 42, 48, 56, 63, 72, 84, 112, 126, 144, 168, 252, 336, 504, 1008} contains 4 pairs (12, 21), (24, 42), (36, 63) and (48, 84) with the property 21 = reversal(12), 42 = reversal(24), 63 = reversal(36) and 84 = reversal(48).
MAPLE
with(numtheory):nn:=10^8:
for n from 1 to 16 do:
ii:=0:
for m from 1 to nn while(ii=0) do:
it:=0:d:=divisors(m):d0:=nops(d):
for i from 1 to d0 do:
dd:=d[i]:y:=convert(dd, base, 10):n1:=length(dd):
s:=sum('y[j]*10^(n1-j)', 'j'=1..n1):
for k from i+1 to d0 do:
if s=d[k]
then
it:=it+1:
else fi:
od:
od:
if it=n
then
ii:=1:printf("%d %d \n", n, m):
else fi:
od:
od:
PROG
(PARI) nbr(vd) = {nb = 0; for (j=1, #vd, da = vd[j]; rda = eval(concat(Vecrev(Str(da)))); rrda = eval(concat(Vecrev(Str(rda)))); if ((da != rda) && vecsearch(vd, rda) && (da == rrda), nb++); ); nb/2; }
a(n) = {k=1; while (nbrp(divisors(k)) != n, k++); k; } \\ Michel Marcus, Dec 27 2015
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Nov 17 2015
EXTENSIONS
a(14)-a(15) corrected by Lars Blomberg, Dec 27 2015
a(7), a(19), a(20) corrected and a(21)-a(32) added by Lars Blomberg, Jan 04 2016
STATUS
approved