OFFSET
1,5
COMMENTS
From Jianing Song, Sep 07 2018: (Start)
Half of the number of integer solutions to x^2 + x*y + 5*y^2 = n.
Inverse Moebius transform of A011585. (End)
Coefficients of Dedekind zeta function for the quadratic number field of discriminant -19. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
From Jianing Song, Sep 07 2018: (Start)
a(n) is multiplicative with a(19^e) = 1, a(p^e) = (1 + (-1)^e) / 2 if Kronecker(-19, p) = -1, a(p^e) = e + 1 if Kronecker(-19, p) = 1.
G.f.: Sum_{k>0} Kronecker(-19, k) * x^k / (1 - x^k).
A028641(n) = 2 * a(n) unless n = 0.
(End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/sqrt(19) = 0.720730... . - Amiram Eldar, Oct 11 2022
MATHEMATICA
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-19, #] &]]; Table[a[n], {n, 1, 100}] (* G. C. Greubel, Jul 17 2018 *)
PROG
(PARI) m = -19; direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
CROSSREFS
Cf. A028641.
Moebius transform gives A011585.
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
KEYWORD
nonn,mult
AUTHOR
STATUS
approved