login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035173
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -17.
1
1, 2, 2, 3, 0, 4, 2, 4, 3, 0, 2, 6, 2, 4, 0, 5, 1, 6, 0, 0, 4, 4, 2, 8, 1, 4, 4, 6, 0, 0, 2, 6, 4, 2, 0, 9, 0, 0, 4, 0, 0, 8, 0, 6, 0, 4, 0, 10, 3, 2, 2, 6, 2, 8, 0, 8, 0, 0, 0, 0, 0, 4, 6, 7, 0, 8, 0, 3, 4, 0, 2, 12, 0, 0, 2, 0, 4, 8, 2, 0, 5
OFFSET
1,2
LINKS
FORMULA
From Amiram Eldar, Nov 17 2023: (Start)
a(n) = Sum_{d|n} Kronecker(-17, d).
Multiplicative with a(17^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(-17, p) = -1 (p is in A296930), and a(p^e) = e+1 if Kronecker(-17, p) = 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/sqrt(17) = 3.047792... . (End)
MATHEMATICA
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-17, #] &]]; Table[a[n], {n, 1, 100}] (* G. C. Greubel, Jul 17 2018 *)
PROG
(PARI) my(m = -17); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(-17, d)); \\ Amiram Eldar, Nov 17 2023
CROSSREFS
Cf. A296930.
Sequence in context: A035189 A197118 A035143 * A263254 A257989 A095201
KEYWORD
nonn,easy,mult
STATUS
approved