login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035172
a(n) = Sum_{d|n} Kronecker(-18, d).
2
1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 0, 0, 0, 1, 2, 1, 2, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 2, 2, 0, 1, 0, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 1, 1, 1, 2, 0, 0, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 2, 2, 2, 0, 0, 0, 1, 2, 0, 1, 2, 0, 0, 0, 0, 1, 2, 2, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 0, 2, 0, 0, 0
OFFSET
1,11
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
For n nonzero, a(n) is nonzero if and only if n is in A002479.
REFERENCES
Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 81, Eq. (32.51).
LINKS
Alexander Berkovich and Hamza Yesilyurt, Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms, arXiv:math/0611300 [math.NT], 2006-2007.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of q * psi(-q^3) * psi(-q^6) * chi(-q^4) / chi(-q) in powers of q where psi(), chi() are Ramanujan theta functions.
From Michael Somos, Apr 25 2003: (Start)
G.f.: x * Product_{k>0} (1 - x^(3*k)) * (1 - x^(24*k)) * (1 + x^k) / (1 + x^(4*k)).
Euler transform of period 24 sequence [ 1, 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -2, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -2, ...]. (End)
Moebius transform is period 24 sequence [ 1, 0, 0, 0, -1, 0, -1 ,0, 0, 0, 1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, ...]. - Michael Somos, Jan 28 2006
From Michael Somos, Aug 04 2006: (Start)
Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1,3 (mod 8), a(p^e) = (1 + (-1)^e)/2 if p == 5,7 (mod 8).
G.f.: Sum_{k>0} x^k * (1 - x^(4*k)) * (1 - x^(6* k)) / (1 + x^(12*k)). (End)
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -18.
G.f.: 1 + Sum{n = -infinity...infinity} (q^n - q^(5n)) / (1 + q^(12n)) (see Berkovich/Yesilyurt). - Ralf Stephan, May 14 2007
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(2)) = 0.7404804... (A093825). - Amiram Eldar, Nov 16 2023
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[-18, #]&]; Array[a, 105] (* Jean-François Alcover, Nov 14 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -18, d)))}
(PARI) {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -18, p) * X))[n])}
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^24 + A) / eta(x + A) / eta(x^8 + A), n))}
CROSSREFS
Cf. A002479, A093825, A122071 (odd bisection).
Sequence in context: A039964 A369453 A340655 * A344858 A110174 A022909
KEYWORD
nonn,easy,mult
STATUS
approved