Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Nov 16 2023 08:43:32
%S 1,1,1,1,0,1,0,1,1,0,2,1,0,0,0,1,2,1,2,0,0,2,0,1,1,0,1,0,0,0,0,1,2,2,
%T 0,1,0,2,0,0,2,0,2,2,0,0,0,1,1,1,2,0,0,1,0,0,2,0,2,0,0,0,0,1,0,2,2,2,
%U 0,0,0,1,2,0,1,2,0,0,0,0,1,2,2,0,0,2,0,2,2,0,0,0,0,0,0,1,2,1,2,1,0,2,0,0,0
%N a(n) = Sum_{d|n} Kronecker(-18, d).
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C For n nonzero, a(n) is nonzero if and only if n is in A002479.
%D Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 81, Eq. (32.51).
%H Antti Karttunen, <a href="/A035172/b035172.txt">Table of n, a(n) for n = 1..10000</a>
%H Alexander Berkovich and Hamza Yesilyurt, <a href="https://arxiv.org/abs/math/0611300">Ramanujan's identities and representation of integers by certain binary and quaternary quadratic forms</a>, arXiv:math/0611300 [math.NT], 2006-2007.
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>, 2019.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.
%F Expansion of q * psi(-q^3) * psi(-q^6) * chi(-q^4) / chi(-q) in powers of q where psi(), chi() are Ramanujan theta functions.
%F From _Michael Somos_, Apr 25 2003: (Start)
%F G.f.: x * Product_{k>0} (1 - x^(3*k)) * (1 - x^(24*k)) * (1 + x^k) / (1 + x^(4*k)).
%F Euler transform of period 24 sequence [ 1, 0, 0, -1, 1, -1, 1, 0, 0, 0, 1, -2, 1, 0, 0, 0, 1, -1, 1, -1, 0, 0, 1, -2, ...]. (End)
%F Moebius transform is period 24 sequence [ 1, 0, 0, 0, -1, 0, -1 ,0, 0, 0, 1, 0, -1, 0, 0, 0, 1, 0, 1, 0, 0, 0, -1, 0, ...]. - _Michael Somos_, Jan 28 2006
%F From _Michael Somos_, Aug 04 2006: (Start)
%F Multiplicative with a(2^e) = a(3^e) = 1, a(p^e) = e+1 if p == 1,3 (mod 8), a(p^e) = (1 + (-1)^e)/2 if p == 5,7 (mod 8).
%F G.f.: Sum_{k>0} x^k * (1 - x^(4*k)) * (1 - x^(6* k)) / (1 + x^(12*k)). (End)
%F Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -18.
%F G.f.: 1 + Sum{n = -infinity...infinity} (q^n - q^(5n)) / (1 + q^(12n)) (see Berkovich/Yesilyurt). - _Ralf Stephan_, May 14 2007
%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(3*sqrt(2)) = 0.7404804... (A093825). - _Amiram Eldar_, Nov 16 2023
%t a[n_] := DivisorSum[n, KroneckerSymbol[-18, #]&]; Array[a, 105] (* _Jean-François Alcover_, Nov 14 2015 *)
%o (PARI) {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -18, d)))}
%o (PARI) {a(n) = if( n<1, 0, direuler( p=2, n, 1 / (1 - X) / (1 - kronecker( -18, p) * X))[n])}
%o (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^24 + A) / eta(x + A) / eta(x^8 + A), n))}
%Y Cf. A002479, A093825, A122071 (odd bisection).
%Y Cf. A000122, A000700, A010054, A121373.
%K nonn,easy,mult
%O 1,11
%A _N. J. A. Sloane_