login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -17.
1

%I #16 Nov 17 2023 16:52:27

%S 1,2,2,3,0,4,2,4,3,0,2,6,2,4,0,5,1,6,0,0,4,4,2,8,1,4,4,6,0,0,2,6,4,2,

%T 0,9,0,0,4,0,0,8,0,6,0,4,0,10,3,2,2,6,2,8,0,8,0,0,0,0,0,4,6,7,0,8,0,3,

%U 4,0,2,12,0,0,2,0,4,8,2,0,5

%N Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = -17.

%H G. C. Greubel, <a href="/A035173/b035173.txt">Table of n, a(n) for n = 1..10000</a>

%F From _Amiram Eldar_, Nov 17 2023: (Start)

%F a(n) = Sum_{d|n} Kronecker(-17, d).

%F Multiplicative with a(17^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(-17, p) = -1 (p is in A296930), and a(p^e) = e+1 if Kronecker(-17, p) = 1.

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/sqrt(17) = 3.047792... . (End)

%t a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[-17, #] &]]; Table[a[n], {n, 1, 100}] (* _G. C. Greubel_, Jul 17 2018 *)

%o (PARI) my(m = -17); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))

%o (PARI) a(n) = sumdiv(n, d, kronecker(-17, d)); \\ _Amiram Eldar_, Nov 17 2023

%Y Cf. A296930.

%K nonn,easy,mult

%O 1,2

%A _N. J. A. Sloane_