login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257989
The crank of the partition having Heinz number n.
10
-1, 2, -2, 3, 0, 4, -3, 2, 0, 5, -2, 6, 0, 3, -4, 7, 1, 8, -1, 4, 0, 9, -3, 3, 0, 2, -1, 10, 1, 11, -5, 5, 0, 4, -2, 12, 0, 6, -3, 13, 1, 14, -1, 3, 0, 15, -4, 4, 1, 7, -1, 16, 2, 5, -2, 8, 0, 17, -1, 18, 0, 4, -6, 6, 1, 19, -1, 9, 1, 20, -3, 21, 0, 3, -1, 5, 1, 22, -4, 2, 0, 23, -1, 7, 0, 10, -2, 24, 2, 6, -1
OFFSET
2,2
COMMENTS
The crank of a partition p is defined to be (i) the largest part of p if there is no 1 in p and (ii) (the number of parts larger than the number of 1's) minus (the number of 1's).
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n, the subprogram b yields the number of 1's in the partition with Heinz number n and the subprogram c yields the number of parts that are larger than the number of 1's in the partition with the Heinz number n.
LINKS
G. E. Andrews and F. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc., 18 (1988), 167-171.
B. C. Berndt, H. H. Chan, S. H. Chan, W.-C. Liaw, Cranks and dissections in Ramanujan's lost notebook, J. Comb. Theory, Ser. A, 109, 2005, 91-120.
B. C. Berndt, H. H. Chan, S. H. Chan, W.-C. Liaw, Cranks - really the final problem, Ramanujan J., 23, 2010, 3-15.
G. E. Andrews, K. Ono, Ramanujan's congruences and Dyson's crank, Proc. Natl. Acad. Sci. USA, 102, 2005, 15277.
K. Mahlburg, Partition congruences and the Andrews-Garvan-Dyson crank, Proc. Natl. Acad. Sci. USA, 102, 2005, 15373-15376.
EXAMPLE
a(12) = - 2 because the partition with Heinz number 12 = 2*2*3 is [1,1,2], the number of parts larger than the number of 1's is 0 and the number of 1's is 2; 0 - 2 = -2.
a(945) = 4 because the partition with Heinz number 945 = 3^3 * 5 * 7 is [2,2,2,3,4] which has no part 1; the largest part is 4.
From Gus Wiseman, Apr 05 2021: (Start)
The partitions (center) with each Heinz number (left), and the corresponding terms (right):
2: (1) -> -1
3: (2) -> 2
4: (1,1) -> -2
5: (3) -> 3
6: (2,1) -> 0
7: (4) -> 4
8: (1,1,1) -> -3
9: (2,2) -> 2
10: (3,1) -> 0
11: (5) -> 5
12: (2,1,1) -> -2
13: (6) -> 6
14: (4,1) -> 0
15: (3,2) -> 3
16: (1,1,1,1) -> -4
(End)
MAPLE
with(numtheory): a := proc (n) local B, b, c: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do; [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: c := proc (n) local b, B, ct, i: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for i to bigomega(n) do if b(n) < B(n)[i] then ct := ct+1 else end if end do: ct end proc: if b(n) = 0 then max(B(n)) else c(n)-b(n) end if end proc: seq(a(n), n = 2 .. 150);
MATHEMATICA
B[n_] := Module[{nn, j, m}, nn = FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
b[n_] := b[n] = If[OddQ[n], 0, 1 + b[n/2]];
c[n_] := Module[{ct, i}, ct = 0; For[i = 1, i <= PrimeOmega[n], i++, If[ b[n] < B[n][[i]], ct++]]; ct];
a[n_] := If[b[n] == 0, Max[B[n]], c[n] - b[n]];
Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Apr 25 2017, after Emeric Deutsch *)
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
ck[y_]:=With[{w=Count[y, 1]}, If[w==0, Max@@y, Count[y, _?(#>w&)]-w]];
Table[ck[primeMS[n]], {n, 2, 30}] (* Gus Wiseman, Apr 05 2021 *)
CROSSREFS
Indices of zeros are A342192.
A001522 counts partitions of crank 0.
A003242 counts anti-run compositions.
A064391 counts partitions by crank.
A064428 counts partitions of nonnegative crank.
Sequence in context: A035143 A035173 A263254 * A095201 A272143 A095058
KEYWORD
sign
AUTHOR
Emeric Deutsch, May 18 2015
STATUS
approved