login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257990
The side-length of the Durfee square of the partition having Heinz number n.
63
0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1
OFFSET
1,9
COMMENTS
The Durfee square of a partition is the largest square that fits inside the Ferrers board of the partition.
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
First appearance of k is a(prime(k)^k) = k. - Gus Wiseman, Apr 12 2019
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976.
G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.
M. Bona, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.
FORMULA
For a partition (p_1 >= p_2 >= ... > = p_r) the side-length of its Durfee square is the largest i such that p_i >=i.
EXAMPLE
a(9)=2; indeed, 9 = 3*3 is the Heinz number of the partition [2,2] and, clearly its Durfee square has side-length =2.
MAPLE
with(numtheory): a := proc (p) local B, S, i: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: S := {}: for i to nops(B(p)) do if i <= B(p)[nops(B(p))+1-i] then S := `union`(S, {i}) else end if end do: max(S) end proc: seq(a(n), n = 2 .. 146);
# second Maple program:
a:= proc(n) local l, t;
l:= sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`);
for t from nops(l) to 1 by -1 do if l[t]>=t then break fi od; t
end:
seq(a(n), n=1..120); # Alois P. Heinz, May 10 2016
MATHEMATICA
a[n_] := a[n] = Module[{l, t}, l = Reverse[Sort[Flatten[Table[PrimePi[ f[[1]] ], {f, FactorInteger[n]}, {f[[2]]}]]]]; For[t = Length[l], t >= 1, t--, If[l[[t]] >= t, Break[]]]; t]; Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Feb 17 2017, after Alois P. Heinz *)
CROSSREFS
Positions of 1's are A093641. Positions of 2's are A325164. Positions of 3's are A307386.
Sequence in context: A378886 A300820 A356936 * A369257 A257743 A033272
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 18 2015
EXTENSIONS
a(1)=0 prepended by Alois P. Heinz, May 10 2016
STATUS
approved