login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The side-length of the Durfee square of the partition having Heinz number n.
63

%I #19 Feb 14 2020 16:31:13

%S 0,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,2,1,1,2,1,1,1,2,1,2,1,1,2,1,1,2,1,

%T 2,2,1,1,2,1,1,2,1,1,2,1,1,1,2,2,2,1,1,2,2,1,2,1,1,2,1,1,2,1,2,2,1,1,

%U 2,2,1,2,1,1,2,1,2,2,1,1,2,1,1,2,2,1,2,1,1,2,2,1,2,1,2,1,1,2,2,2,1,2,1,1

%N The side-length of the Durfee square of the partition having Heinz number n.

%C The Durfee square of a partition is the largest square that fits inside the Ferrers board of the partition.

%C We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.

%C In the Maple program the subprogram B yields the partition with Heinz number n.

%C First appearance of k is a(prime(k)^k) = k. - _Gus Wiseman_, Apr 12 2019

%D G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass. 1976.

%D G. E. Andrews, K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, Cambridge.

%D M. Bona, A Walk Through Combinatorics, World Scientific Publishing Co., 2002.

%H Alois P. Heinz, <a href="/A257990/b257990.txt">Table of n, a(n) for n = 1..20000</a>

%H Findstat, <a href="http://www.findstat.org/StatisticsDatabase/St000183/">St000183: The side length of the Durfee square of an integer partition</a>

%F For a partition (p_1 >= p_2 >= ... > = p_r) the side-length of its Durfee square is the largest i such that p_i >=i.

%e a(9)=2; indeed, 9 = 3*3 is the Heinz number of the partition [2,2] and, clearly its Durfee square has side-length =2.

%p with(numtheory): a := proc (p) local B, S, i: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: S := {}: for i to nops(B(p)) do if i <= B(p)[nops(B(p))+1-i] then S := `union`(S, {i}) else end if end do: max(S) end proc: seq(a(n), n = 2 .. 146);

%p # second Maple program:

%p a:= proc(n) local l, t;

%p l:= sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`);

%p for t from nops(l) to 1 by -1 do if l[t]>=t then break fi od; t

%p end:

%p seq(a(n), n=1..120); # _Alois P. Heinz_, May 10 2016

%t a[n_] := a[n] = Module[{l, t}, l = Reverse[Sort[Flatten[Table[PrimePi[ f[[1]] ], {f, FactorInteger[n]}, {f[[2]]}]]]]; For[t = Length[l], t >= 1, t--, If[l[[t]] >= t, Break[]]]; t]; Table[a[n], {n, 1, 120}] (* _Jean-François Alcover_, Feb 17 2017, after _Alois P. Heinz_ *)

%Y Positions of 1's are A093641. Positions of 2's are A325164. Positions of 3's are A307386.

%Y Cf. A006918, A056239, A062457, A065770, A112798, A115720, A117485, A215366, A252464, A325163, A325169.

%K nonn

%O 1,9

%A _Emeric Deutsch_, May 18 2015

%E a(1)=0 prepended by _Alois P. Heinz_, May 10 2016