login
A325164
Heinz numbers of integer partitions with Durfee square of length 2.
17
9, 15, 18, 21, 25, 27, 30, 33, 35, 36, 39, 42, 45, 49, 50, 51, 54, 55, 57, 60, 63, 65, 66, 69, 70, 72, 75, 77, 78, 81, 84, 85, 87, 90, 91, 93, 95, 98, 99, 100, 102, 105, 108, 110, 111, 114, 115, 117, 119, 120, 121, 123, 126, 129, 130, 132, 133, 135, 138, 140
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also positions of 2 in A257990.
First differs from A105441 in lacking 125.
The Durfee length 1 case is A093641. The enumeration of Durfee length 2 partitions by sum is given by A006918, while that of Durfee length 3 partitions is given by A117485.
EXAMPLE
The sequence of terms together with their prime indices begins:
9: {2,2}
15: {2,3}
18: {1,2,2}
21: {2,4}
25: {3,3}
27: {2,2,2}
30: {1,2,3}
33: {2,5}
35: {3,4}
36: {1,1,2,2}
39: {2,6}
42: {1,2,4}
45: {2,2,3}
49: {4,4}
50: {1,3,3}
51: {2,7}
54: {1,2,2,2}
55: {3,5}
57: {2,8}
60: {1,1,2,3}
MATHEMATICA
durf[n_]:=Length[Select[Range[PrimeOmega[n]], Reverse[Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]][[#]]>=#&]];
Select[Range[100], durf[#]==2&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 05 2019
STATUS
approved