OFFSET
0,5
COMMENTS
T(n,k) is number of partitions of n-k^2 into parts of 2 kinds with at most k of each kind.
LINKS
Alois P. Heinz, Rows n = 0..600, flattened
Eric Weisstein's World of Mathematics, Durfee Square
FORMULA
T(n,k) = Sum_{i=0..n-k^2} P*(i,k)*P*(n-k^2-i), where P*(n,k) = P(n+k,k) is the number of partitions of n objects into at most k parts.
EXAMPLE
Triangle starts:
1;
0, 1;
0, 2;
0, 3;
0, 4, 1;
0, 5, 2;
0, 6, 5;
0, 7, 8;
0, 8, 14;
0, 9, 20, 1;
0, 10, 30, 2;
From Gus Wiseman, Apr 12 2019: (Start)
Row n = 9 counts the following partitions:
(9) (54) (333)
(81) (63)
(711) (72)
(6111) (432)
(51111) (441)
(411111) (522)
(3111111) (531)
(21111111) (621)
(111111111) (3222)
(3321)
(4221)
(4311)
(5211)
(22221)
(32211)
(33111)
(42111)
(222111)
(321111)
(2211111)
(End)
MAPLE
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
T:= (n, k)-> add(b(m, k)*b(n-k^2-m, k), m=0..n-k^2):
seq(seq(T(n, k), k=0..floor(sqrt(n))), n=0..30); # Alois P. Heinz, Apr 09 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; T[n_, k_] := Sum[b[m, k]*b[n-k^2-m, k], {m, 0, n-k^2}]; Table[ T[n, k], {n, 0, 30}, {k, 0, Sqrt[n]}] // Flatten (* Jean-François Alcover, Dec 03 2015, after Alois P. Heinz *)
durf[ptn_]:=Length[Select[Range[Length[ptn]], ptn[[#]]>=#&]];
Table[Length[Select[IntegerPartitions[n], durf[#]==k&]], {n, 0, 10}, {k, 0, Sqrt[n]}] (* Gus Wiseman, Apr 12 2019 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Franklin T. Adams-Watters, Mar 11 2006
STATUS
approved