login
A046767
Number of partitions of n with equal number of parts congruent to each of 0, 1 and 3 (mod 4).
2
1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 4, 0, 8, 0, 10, 0, 18, 0, 24, 0, 40, 0, 53, 0, 85, 0, 113, 0, 172, 0, 230, 0, 341, 0, 451, 0, 654, 0, 861, 0, 1225, 0, 1605, 0, 2243, 0, 2923, 0, 4033, 0, 5228, 0, 7116, 0, 9186, 0, 12368, 0, 15889, 0, 21177, 0, 27091, 0, 35782, 0, 45585, 0, 59709
OFFSET
0,7
LINKS
FORMULA
G.f.: (Sum_{k>=0} x^(8*k)/(Product_{j=1..k} 1 - x^(4*j))^3)/(Product_{j>=0} 1 - x^(4*j+2)). - Andrew Howroyd, Sep 16 2019
PROG
(PARI) seq(n)={Vec(sum(k=0, n\8, x^(8*k)/prod(j=1, k, 1 - x^(4*j) + O(x*x^n))^3)/prod(j=0, n\4, 1 - x^(4*j+2) + O(x*x^n)))} \\ Andrew Howroyd, Sep 16 2019
CROSSREFS
Cf. A046765.
Sequence in context: A008801 A073739 A223707 * A115720 A053120 A366601
KEYWORD
nonn
STATUS
approved