The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046764 Sum of the 4th powers of the divisors of n is divisible by n. 4
 1, 34, 84, 156, 364, 492, 1092, 3444, 5617, 6396, 11234, 22468, 33628, 44772, 67404, 100884, 157276, 190978, 292084, 435708, 437164, 471828, 549687, 569772, 709937, 742612, 763912, 876252, 986076, 1099374, 1118480, 1289484, 1311492, 1419874 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Compare with multiply perfect numbers, A007691. Here Sum[ divisors ] is replaced by Sum[ 4th powers of divisors ]. Problem 11090 proves that this sequence is infinite. - T. D. Noe, Apr 18 2006 LINKS Amiram Eldar, Table of n, a(n) for n = 1..1000 (terms 1..200 from T. D. Noe) Florian Luca and John Ferdinands, Problem 11090: Sometimes n divides sigma_k(n), Amer. Math. Monthly 113:4 (2006), pp. 372-373. FORMULA Mod[ Sigma [ 4, n ], n ]=0. EXAMPLE n=84, Sigma[ 4,84 ] = Sum(d^4) = 53771172 = 640133*84 = 640133*n; n=5617, Sigma[ 4,5617 ] = 995446331475844 = 5617*17722083332, a multiple of n. MAPLE with(numtheory); A046764:=proc(q) local a, i, n; for n from 1 to q do   a:=divisors(n); if frac(add(a[i]^4, i=1..nops(a))/n)=0 then print(n); fi; od; end: A046764(100000);  # Paolo P. Lava, Dec 07 2012 MATHEMATICA Do[If[Mod[DivisorSigma[4, n], n]==0, Print[n]], {n, 1, 2*10^6}] Select[Range[1500000], Divisible[DivisorSigma[4, #], #]&] (* Harvey P. Dale, Jun 25 2014 *) PROG (PARI) is(n)=sigma(n, 4)%n==0 \\ Charles R Greathouse IV, Feb 04 2013 CROSSREFS Cf. A001159, A007691. Sequence in context: A066284 A036199 A092223 * A260276 A278311 A213025 Adjacent sequences:  A046761 A046762 A046763 * A046765 A046766 A046767 KEYWORD nonn AUTHOR EXTENSIONS More terms from Robert G. Wilson v, Jun 09 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 18:31 EDT 2020. Contains 333117 sequences. (Running on oeis4.)