login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046765 Number of partitions of n with equal number of parts congruent to each of 0, 1 and 2 (mod 3). 14
1, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 7, 0, 0, 13, 0, 0, 25, 0, 0, 43, 0, 0, 77, 0, 0, 130, 0, 0, 222, 0, 0, 365, 0, 0, 603, 0, 0, 966, 0, 0, 1546, 0, 0, 2425, 0, 0, 3783, 0, 0, 5813, 0, 0, 8884, 0, 0, 13411, 0, 0, 20130, 0, 0, 29922, 0, 0, 44217, 0, 0, 64814, 0, 0, 94485, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..1000

FORMULA

G.f.: Sum_{k>=0} x^(6*k)/(Product_{j=1..k} 1 - x^(3*j))^3. - Andrew Howroyd, Sep 16 2019

MATHEMATICA

Table[Length[Select[Last /@ Transpose /@ Tally /@ Mod[IntegerPartitions[n], 3], Length[#] == 3 && Length[Union[#]] == 1 &]], {n, 50}] (* Jayanta Basu, Jun 28 2013 *)

PROG

(PARI) seq(n)={Vec(sum(k=0, n\6, x^(6*k)/prod(j=1, k, 1 - x^(3*j) + O(x*x^n))^3) + O(x*x^n))} \\ Andrew Howroyd, Sep 16 2019

CROSSREFS

Other similar sequences include:

  Mod 4: A046766, A046767, A046768, A046769, A046770.

  Mod 5: A046771, A046772, A046773, A046774, A046775, A046776.

Sequence in context: A060284 A036275 A131436 * A046777 A227724 A218538

Adjacent sequences:  A046762 A046763 A046764 * A046766 A046767 A046768

KEYWORD

nonn

AUTHOR

David W. Wilson

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 12:18 EDT 2020. Contains 334681 sequences. (Running on oeis4.)