The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046765 Number of partitions of n with equal number of parts congruent to each of 0, 1 and 2 (mod 3). 14
 1, 0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 0, 7, 0, 0, 13, 0, 0, 25, 0, 0, 43, 0, 0, 77, 0, 0, 130, 0, 0, 222, 0, 0, 365, 0, 0, 603, 0, 0, 966, 0, 0, 1546, 0, 0, 2425, 0, 0, 3783, 0, 0, 5813, 0, 0, 8884, 0, 0, 13411, 0, 0, 20130, 0, 0, 29922, 0, 0, 44217, 0, 0, 64814, 0, 0, 94485, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,10 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..1000 FORMULA G.f.: Sum_{k>=0} x^(6*k)/(Product_{j=1..k} 1 - x^(3*j))^3. - Andrew Howroyd, Sep 16 2019 MATHEMATICA Table[Length[Select[Last /@ Transpose /@ Tally /@ Mod[IntegerPartitions[n], 3], Length[#] == 3 && Length[Union[#]] == 1 &]], {n, 50}] (* Jayanta Basu, Jun 28 2013 *) PROG (PARI) seq(n)={Vec(sum(k=0, n\6, x^(6*k)/prod(j=1, k, 1 - x^(3*j) + O(x*x^n))^3) + O(x*x^n))} \\ Andrew Howroyd, Sep 16 2019 CROSSREFS Other similar sequences include:   Mod 4: A046766, A046767, A046768, A046769, A046770.   Mod 5: A046771, A046772, A046773, A046774, A046775, A046776. Sequence in context: A060284 A036275 A131436 * A046777 A227724 A218538 Adjacent sequences:  A046762 A046763 A046764 * A046766 A046767 A046768 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 12:18 EDT 2020. Contains 334681 sequences. (Running on oeis4.)