login
A046772
Number of partitions of n with equal number of parts congruent to each of 0, 1, 2 and 4 (mod 5).
2
1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 1, 1, 2, 2, 5, 3, 2, 6, 4, 12, 7, 6, 17, 9, 26, 19, 14, 41, 21, 51, 47, 37, 86, 52, 99, 103, 91, 171, 115, 196, 212, 206, 328, 246, 384, 418, 437, 616, 503, 749, 793, 889, 1142, 993, 1441, 1475, 1725, 2104, 1905, 2716, 2705, 3256
OFFSET
0,13
LINKS
FORMULA
G.f.: (Sum_{k>=0} x^(12*k)/(Product_{j=1..k} 1 - x^(5*j))^3)/(Product_{j>=0} 1 - x^(5*j+3)). - Andrew Howroyd, Sep 16 2019
PROG
(PARI) seq(n)={Vec(sum(k=0, n\12, x^(12*k)/prod(j=1, k, 1 - x^(5*j) + O(x*x^n))^4)/prod(j=0, n\5, 1 - x^(5*j+3) + O(x*x^n)))} \\ Andrew Howroyd, Sep 16 2019
CROSSREFS
Cf. A046765.
Sequence in context: A199627 A153902 A318205 * A348291 A359652 A179974
KEYWORD
nonn
STATUS
approved