login
A278311
Numbers n such that n-1 and n+1 have the same number of prime factors as n (with multiplicity).
2
34, 86, 94, 122, 142, 171, 202, 214, 218, 245, 285, 302, 394, 429, 435, 446, 507, 603, 604, 605, 634, 638, 698, 842, 922, 963, 1042, 1075, 1084, 1085, 1131, 1138, 1245, 1262, 1275, 1310, 1346, 1402, 1413, 1431, 1435, 1449, 1491, 1533, 1557, 1587, 1605, 1635, 1642, 1676, 1762, 1772, 1838, 1886, 1894, 1925, 1942
OFFSET
1,1
EXAMPLE
a(1) = 34, as 33, 34, and 35 all have 2 prime factors.
a(2) = 86, as 85, 86, and 87 all have 2 prime factors.
PROG
(Java) public class A278311{
public static void main(String[] args)throws Exception{
long dim0=numberOfPrimeFactors(2); //note that this method must be manually implemented by the user
long dim1=numberOfPrimeFactors(3);
long dim2;
long counter=4;
long index=1;
while(index<=10000){
dim2=numberOfPrimeFactors(counter);
if(dim2==dim1&&dim1==dim0){System.out.println(index+" "+(counter-1)); index++; }
dim0=dim1;
dim1=dim2;
counter++;
}
}
}
(SageMath)
def bigomega(x):
s=0;
f=list(factor(x));
for c in range(len(f)):
s+=f[c][1]
return s;
dim0=bigomega(2);
dim1=bigomega(3);
counter=4
index=1
while(index<=10000):
dim2=bigomega(counter);
if(dim2==dim1&dim1==dim0):
print(str(index)+" "+str(counter-1))
index+=1;
dim0=dim1;
dim1=dim2;
counter+=1;
(PARI) isok(n) = (bigomega(n-1) == bigomega(n)) && (bigomega(n) == bigomega(n+1)); \\ Michel Marcus, Nov 17 2016
CROSSREFS
Intersection of A045920 and A278291.
a(n) = A045939(n) + 1.
Sequence in context: A092223 A046764 A260276 * A213025 A365200 A086005
KEYWORD
nonn
AUTHOR
Ely Golden, Nov 17 2016
STATUS
approved