login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365200
Even semiprimes that are the exact average of two consecutive odd semiprimes.
2
34, 86, 94, 122, 142, 194, 202, 214, 218, 262, 302, 314, 358, 386, 394, 422, 446, 562, 586, 626, 634, 698, 734, 838, 842, 922, 982, 1042, 1138, 1234, 1262, 1306, 1346, 1366, 1402, 1522, 1642, 1646, 1658, 1754, 1762, 1774, 1838, 1874, 1894, 1906, 1942, 1982, 2026, 2098, 2102, 2182, 2186, 2218
OFFSET
1,1
EXAMPLE
34 is a term because (33 + 35)/2 = 34 = 2*17 is an even semiprime.
86 is a term because (85 + 87)/2 = 86 = 2*43 is an even semiprime.
MATHEMATICA
sp=Select[Range[5, 2400, 2], PrimeOmega[#]==2&]; a={}; For[i=1, i<Length[sp], i++, hav=Sum[Part[sp, k], {k, i, i+1}]/4; If[PrimeQ[hav], AppendTo[a, 2hav]]]; a (* Stefano Spezia, Aug 25 2023 *)
PROG
(PARI) upto(n) = {my(res = List(), l = List([0, 9]), s = sum(i = 1, #l, l[i]), i = l[#l]+2, ntimes2 = 2*n); while(1, if(bigomega(i) == 2, s += (i-l[1]); if(s > ntimes2, return(res)); if(s % 4 == 0 && isprime(s/4), listput(res, s/2)); listpop(l, 1); listput(l, i)); i+=2)} \\ David A. Corneth, Aug 26 2023
CROSSREFS
Subset of A100484.
Sequence in context: A260276 A278311 A213025 * A086005 A169834 A248201
KEYWORD
nonn
AUTHOR
Elmo R. Oliveira, Aug 25 2023
STATUS
approved