login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169834
Numbers k such that d(k-1) = d(k) = d(k+1).
7
34, 86, 94, 142, 202, 214, 218, 231, 243, 244, 302, 375, 394, 446, 604, 634, 664, 698, 903, 922, 1042, 1106, 1138, 1262, 1275, 1310, 1335, 1346, 1402, 1642, 1762, 1833, 1838, 1886, 1894, 1925, 1942, 1982, 2014, 2055, 2102, 2134, 2182, 2218, 2265, 2306, 2344, 2362
OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Reinhard Zumkeller)
Erich Friedman, What's Special About This Number? (See entry 34.)
FORMULA
a(n) = A005238(n) + 1. - Jon Maiga / Georg Fischer, Jun 24 2021
MAPLE
q:= n-> is(nops(map(numtheory[tau], {$n-1..n+1}))=1):
select(q, [$1..3000])[]; # Alois P. Heinz, Jun 24 2021
MATHEMATICA
d[n_] := DivisorSigma[0, n];
samedQ[n_] := d[n-1] == d[n] == d[n+1];
Select[Range[3000], samedQ] (* Jean-François Alcover, Aug 01 2018 *)
1 + Flatten@Position[Differences@#&/@Partition[DivisorSigma[0, Range@3000], 3, 1], {0, 0}] (* Hans Rudolf Widmer, Feb 02 2023 *)
PROG
(Haskell)
a169834 n = a169834_list !! (n-1)
a169834_list = f a051950_list [0..] where
f (0:0:ws) (x:y:zs) = y : f (0:ws) (y:zs)
f (_:v:ws) (_:y:zs) = f (v:ws) (y:zs)
-- Reinhard Zumkeller, Aug 31 2014
(Python)
from sympy import divisor_count as d
def ok(n): return d(n-1) == d(n) == d(n+1)
print(list(filter(ok, range(1, 2400)))) # Michael S. Branicky, Jun 24 2021
CROSSREFS
Cf. A051950.
Sequence in context: A213025 A365200 A086005 * A248201 A140602 A067977
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 02 2010
STATUS
approved