login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169836
Perfect squares that are a product of two distinct triangular numbers.
3
0, 36, 900, 1225, 7056, 32400, 41616, 44100, 88209, 108900, 298116, 705600, 1368900, 1413721, 1498176, 2924100, 5336100, 8643600, 8820900, 9217296, 10432900, 15210000, 24147396, 37088100, 48024900, 50893956, 50979600, 52490025, 55353600, 80568576
OFFSET
1,2
COMMENTS
a(47) = 1728896400 is the product of two distinct triangular numbers in two different ways. 1728896400 = A000217(8) * A000217(9800) = A000217(27) * A000217(3024). - Donovan Johnson, Sep 01 2012
LINKS
Erich Friedman, What's Special About This Number? (See entry 7056.)
FORMULA
a(n) = (A175497(n))^2. [From R. J. Mathar, Jun 03 2010]
EXAMPLE
Examples: 900=3*300. 7056 = 6*1176. 1368900 = 6*228150. 44100 = 36*1225.
PROG
(PARI) istriangular(n)=issquare(8*n+1)
isok(n) = {if (issquare(n), d = divisors(n); fordiv(n, d, if (d > sqrtint(n), break); if ((d != n/d) && istriangular(d) && istriangular(n/d), return (1)); ); ); return (0); } \\ Michel Marcus, Jul 24 2013
(Python)
from itertools import count, islice, takewhile
from sympy import divisors
from sympy.ntheory.primetest import is_square
def A169836_gen(): # generator of terms
return filter(lambda k:not k or any(map(lambda d: is_square((d<<3)+1) and is_square((k//d<<3)+1), takewhile(lambda d:d**2<k, divisors(k)))), (m**2 for m in count(0)))
A169836_list = list(islice(A169836_gen(), 20)) # Chai Wah Wu, Mar 13 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
R. J. Mathar, May 30 2010
EXTENSIONS
More terms from R. J. Mathar, Jun 03 2010
STATUS
approved