login
A096771
Triangle read by rows: T(n,m) is the number of partitions of n that (just) fit inside an m X m box, but not in an (m-1) X (m-1) box. Partitions of n with Max(max part, length) = m.
17
1, 0, 2, 0, 1, 2, 0, 1, 2, 2, 0, 0, 3, 2, 2, 0, 0, 3, 4, 2, 2, 0, 0, 2, 5, 4, 2, 2, 0, 0, 1, 7, 6, 4, 2, 2, 0, 0, 1, 6, 9, 6, 4, 2, 2, 0, 0, 0, 7, 11, 10, 6, 4, 2, 2, 0, 0, 0, 5, 14, 13, 10, 6, 4, 2, 2, 0, 0, 0, 5, 15, 19, 14, 10, 6, 4, 2, 2, 0, 0, 0, 3, 17, 22, 21, 14, 10, 6, 4, 2, 2, 0, 0, 0, 2, 17, 29
OFFSET
1,3
COMMENTS
Row sums are A000041. Columns are finite and sum to A051924. The final floor(n/2) terms of each row are the reverse of the initial terms of 2*A000041.
FORMULA
Sum_{k>=1} k*T(n,k) = A368985(n). - Andrew Howroyd, Jan 12 2024
EXAMPLE
T(5,3)=3, counting 32, 311 and 221.
From Gus Wiseman, Apr 12 2019: (Start)
Triangle begins:
1
0 2
0 1 2
0 1 2 2
0 0 3 2 2
0 0 3 4 2 2
0 0 2 5 4 2 2
0 0 1 7 6 4 2 2
0 0 1 6 9 6 4 2 2
0 0 0 7 11 10 6 4 2 2
0 0 0 5 14 13 10 6 4 2 2
0 0 0 5 15 19 14 10 6 4 2 2
0 0 0 3 17 22 21 14 10 6 4 2 2
0 0 0 2 17 29 27 22 14 10 6 4 2 2
0 0 0 1 17 33 36 29 22 14 10 6 4 2 2
0 0 0 1 15 39 45 41 30 22 14 10 6 4 2 2
0 0 0 0 14 41 57 52 43 30 22 14 10 6 4 2 2
0 0 0 0 11 47 67 69 57 44 30 22 14 10 6 4 2 2
0 0 0 0 9 46 81 85 76 59 44 30 22 14 10 6 4 2 2
(End)
MATHEMATICA
Table[Count[Partitions[n], q_List /; Max[Length[q], Max[q]]===k], {n, 16}, {k, n}]
PROG
(PARI) row(n)={my(r=vector(n)); forpart(p=n, r[max(#p, p[#p])]++); r} \\ Andrew Howroyd, Jan 12 2024
CROSSREFS
A version with reflected rows is A338621.
Related triangles are A115720, A325188, A325189, A325192, A325200, with Heinz-encoded versions A257990, A325169, A065770, A325178, A325195.
Sequence in context: A215590 A097203 A025850 * A129714 A022333 A055087
KEYWORD
easy,nonn,tabl
AUTHOR
Wouter Meeussen, Aug 21 2004
STATUS
approved