login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115718
Inverse of number triangle A115717; a divide-and-conquer related triangle.
1
1, 0, 1, -3, 1, 1, 0, 0, 0, 1, -3, -3, 1, 1, 1, 0, 0, 0, 0, 0, 1, -3, -3, -3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, -3, -3, -3, -3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0,4
COMMENTS
Product of A115713 and (1/(1-x), x).
Row sums are 1,1,-1,1,-3,1,-5,1,-7,1, ... with g.f. (1+x-3*x^2-x^3)/(1-x^2)^2.
Row sums of inverse are A115716.
FORMULA
From G. C. Greubel, Nov 29 2021: (Start)
T(2*n, k) = -3 if (k < n/2) otherwise 1.
T(2*n+1, k) = 0 if (k < n) otherwise 1.
Sum_{k=0..n} T(n, k) = (1/2)*(2 + (1 + (-1)^n)*n) = 1 + A237420(n). (End)
EXAMPLE
Triangle begins
1;
0, 1;
-3, 1, 1;
0, 0, 0, 1;
-3, -3, 1, 1, 1;
0, 0, 0, 0, 0, 1;
-3, -3, -3, 1, 1, 1, 1;
0, 0, 0, 0, 0, 0, 0, 1;
-3, -3, -3, -3, 1, 1, 1, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1;
-3, -3, -3, -3, -3, -3, -3, 1, 1, 1, 1, 1, 1, 1, 1;
MATHEMATICA
T[n_, k_]:= If[OddQ[n], If[k<n, 0, 1], If[k<n/2, -3, 1]];
Table[T[n, k], {n, 0, 16}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 29 2021 *)
PROG
(Sage)
def A115718(n, k):
if (n%2==0): return 0 if (k<n) else 1
else: return -3 if (k<n/2) else 1
flatten([[A115718(n, k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 29 2021
CROSSREFS
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Jan 29 2006
STATUS
approved