login
A204242
Infinite symmetric matrix given by f(i,1)=1, f(1,j)=1, f(i,i)=2^i-1 and f(i,j)=0 otherwise, read by antidiagonals.
2
1, 1, 1, 1, 3, 1, 1, 0, 0, 1, 1, 0, 7, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 15, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 31, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 63, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 127, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0
OFFSET
1,5
LINKS
FORMULA
From Robert Israel, Nov 30 2015: (Start)
a(k*(k+1)/2) = a(1 + k*(k+1)/2) = 1.
a(2*k^2 + 2*k + 1) = 2^(k+1) - 1.
a(n) = 0 otherwise. (End)
EXAMPLE
Northwest corner:
1 1 1 1
1 3 0 0
1 0 7 0
1 0 0 15
MAPLE
N:= 1000: # to get a(1) to a(N)
V:= Vector(N):
V[[seq(k*(k+1)/2, k= 1..floor((sqrt(8*N+1)-1)/2))]]:= 1:
V[[seq(1+k*(k+1)/2, k=1..floor((sqrt(8*N-7)-1)/2))]]:= 1:
V[[seq(1+2*k+2*k^2, k=0..floor((sqrt(2*N-1)-1)/2))]]:=
<seq(2^(k+1)-1, k=0..floor((sqrt(2*N-1)-1)/2))>:
convert(V, list); # Robert Israel, Nov 30 2015
MATHEMATICA
f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A204242 *)
Table[Det[m[n]], {n, 1, 15}] (* A204243 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 15}] (* A203011 *)
CROSSREFS
Sequence in context: A115718 A361510 A204181 * A211313 A368847 A321609
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jan 13 2012
EXTENSIONS
Name edited by Robert Israel, Nov 30 2015
STATUS
approved