login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A204243
Determinant of the n-th principal submatrix of A204242.
4
1, 2, 11, 144, 4149, 251622, 31340799, 7913773980, 4024015413705, 4106387069191890, 8395359475529822355, 34357677843892688699400, 281336437060919094044274525, 4608419756389534634440592965950, 150992374805715685629827976712244775
OFFSET
1,2
FORMULA
a(n) = (1 - Sum_{k=2..n} 1/(2^k-1)) * Product_{k=2..n} (2^k-1) = 2*A005329(n) - A203011(n). - Robert Israel, Nov 30 2015
MAPLE
f:= n -> (1 - add(1/(2^i-1), i=2..n))*mul(2^i-1, i=2..n):
seq(f(n), n=1..30); # Robert Israel, Nov 30 2015
MATHEMATICA
f[i_, j_] := 0; f[1, j_] := 1; f[i_, 1] := 1; f[i_, i_] := 2^i - 1;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A204242 *)
Table[Det[m[n]], {n, 1, 15}] (* A204243 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 15}] (* A203011 *)
PROG
(PARI) vector(20, n, matdet(matrix(n, n, i, j, if(i==1, 1, if(j==1, 1, if(i==j, 2^i-1)))))) \\ Colin Barker, Nov 27 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 13 2012
STATUS
approved