login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035176
a(n) = Sum_{d|n} Kronecker(-14, d).
2
1, 1, 2, 1, 2, 2, 1, 1, 3, 2, 0, 2, 2, 1, 4, 1, 0, 3, 2, 2, 2, 0, 2, 2, 3, 2, 4, 1, 0, 4, 0, 1, 0, 0, 2, 3, 0, 2, 4, 2, 0, 2, 0, 0, 6, 2, 0, 2, 1, 3, 0, 2, 0, 4, 0, 1, 4, 0, 2, 4, 2, 0, 3, 1, 4, 0, 0, 0, 4, 2, 2, 3, 0, 0, 6, 2, 0, 4, 2, 2, 5, 0, 2, 2, 0, 0, 0, 0, 0, 6, 2, 2, 0, 0, 4, 2, 0, 1, 0, 3, 2, 0, 0, 2, 4
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Dirichlet g.f.: zeta(s) * L(chi,s) where chi(n) = Kronecker( -14, n).
From Michael Somos, Jun 22 2011: (Start)
Expansion of q * f(q^2) * f(q^7) / (chi(q) * chi(q^14)) + 2 * psi(q^4) * phi(-q^7) * chi(-q^14) / chi(-q^2) - 2 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
a(n) is multiplicative with a(p^e) = (1 - q^e) / (1 - q) where q = p * Kronecker( -14, p). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(14) = 1.679251... . - Amiram Eldar, Nov 17 2023
EXAMPLE
x + x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6 + x^7 + x^8 + 3*x^9 + 2*x^10 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ KroneckerSymbol[ -14, d], { d, Divisors[ n]}]] (* Michael Somos, Jun 22 2011 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -14, d)))} /* Michael Somos, Jun 22 2011 */
(PARI) {a(n) = if( n<1, 0, direuler( p=2, n, 1 / ((1 - X) * (1 - kronecker( -14, p) * X)))[n])} /* Michael Somos, Jun 22 2011 */
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 2 * (eta(x^7 + A) * eta(x^8 + A))^2 / (eta(x^2 + A) * eta(x^28 + A)) - 2 + x * eta(x + A) * eta(x^4 + A)^4 * eta(x^14 + A)^4 * eta(x^56 + A) / (eta(x^2 + A)^3* eta(x^7 + A) * eta(x^8 + A) * eta(x^28 + A)^3), n))} /* Michael Somos, Jun 22 2011 */
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved