OFFSET
1,3
COMMENTS
Coefficients of Dedekind zeta function for the quadratic number field of discriminant 13. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log((3+sqrt(13))/2)/sqrt(13) = 0.662735... . - Amiram Eldar, Oct 11 2022
From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(13, d).
MATHEMATICA
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[13, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
PROG
(PARI) my(m=13); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(13, d)); \\ Amiram Eldar, Nov 18 2023
CROSSREFS
Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
KEYWORD
nonn,easy,mult
AUTHOR
STATUS
approved