login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035193
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 11.
4
1, 0, 0, 1, 2, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 4, 1, 2, 0, 0, 0, 0, 0, 2, 1, 2, 0, 0, 0, 3, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 2, 2, 1
OFFSET
1,5
LINKS
FORMULA
From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(11, d).
Multiplicative with a(11^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(11, p) = -1 (p is in A296936), and a(p^e) = e+1 if Kronecker(11, p) = 1 (p is in A296935).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(3*sqrt(11)+10)/(3*sqrt(11)) = 0.60166042997... . (End)
MATHEMATICA
a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[11, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
PROG
(PARI) my(m=11); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(11, d)); \\ Amiram Eldar, Nov 18 2023
CROSSREFS
Sequence in context: A242041 A376996 A224937 * A004556 A263635 A373850
KEYWORD
nonn,easy,mult
STATUS
approved