OFFSET
0,6
COMMENTS
EXAMPLE
In the table below, replace each integer i with A000720(i) to get the current sequence:
-3 -2 -1 0 1 2 (= k)(n= )
0 1 0
1 0 1
0 2 2
0 2 0 1 3
0 0 3 0 4
0 3 0 2 5
1 0 4 0 6
0 4 0 3 7
2 0 5 0 8
0 5 0 4 9
0 3 0 6 0 1 10
0 0 6 0 5 0 11
0 4 0 7 0 2 12
0 0 7 0 6 0 13
0 5 0 8 0 3 14
1 0 8 0 7 0 15
...
The table then starts as:
0 0,1
1 1,0
2 0,2
3 0,2,0,1
4 0,0,5,0
5 0,5,0,2
6 1,0,10,0
7 0,10,0,5
8 2,0,20,0
9 0,20,0,10
10 0,5,0,36,0,1
...
The partitions of n=5 then give (0,5,0,2) for k=(-2,-1,0,1); this corresponds to 5 partitions with -1 excess odd parts on even over odd positions, and 2 with 1 excess, namely (4,1') and (2,1',1,1') where odd parts on even positions are marked by a quote.
MATHEMATICA
Table[ CoefficientList[ x^Floor[(3+Sqrt[1+8*n])/4]* Tr[x^Tr[(-1)^Mod[Flatten[Position[#, _?OddQ]], 2]]&/@Partitions[n]], x], {n, 0, 12}]; (* or *)
a712[n_Integer]:= a712[n] =If[n<0, 0, (# . Reverse[#])& [PartitionsP[ Range[0, n] ]]]; Table[If[Mod[n+k, 2]==1, 0, a712[-1+Max[0, (2+n-k*(2*k+1))/2]]], {n, 0, 12}, {k, -Floor[(3+Sqrt[1+8*n])/4], Floor[(-1+Sqrt[1+8*n])/4]}]
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Wouter Meeussen, Apr 20 2013
STATUS
approved